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A note on the one-particle and Hilbert-Schmidt cohomologies 
of the Poincare group in three spacetime dimensions 

Peter Basarab-Horwath 
Department of Physics, Lancaster University, Lancaster LA1 4YB, UK 

Received 10 June 1985 

Abstract. Cocycles for P: ( 2 +  1) with values in a Hilbert space are studied. It is found 
that cocycles for irreducible representations (apart from the case of vanishing momentum) 
are trivial. Further, cocycles for the action V (  . )V- '  with values in the representation 
space of V are investigated, and found to be trivial. Some consequences for physics are 
obtained. 

1. Introduction 

This article is part of a series which presents the solution and use in mathematical 
physics of group cohomology [ 1-51. 

Group cohomology arises from problems of group covariance in non-Fock rep- 
resentations of the canonical commutation relations (CCR) and of the canonical anti- 
commutation relations (CAR).  

For the CAR, one studies unitary implementability, of a symmetry group G of the 
one-particle space X, in representations defined by pure quasifree gauge invariant 
states up, where P is a projection in X. The necessary and sufficient condition for 
this to occur is 

VgPV,' - P E B(  X), (the Hilbert-Schmidt operators on X) 
for each g E G. The state w p  is a Fock state if and only if P E  B ( X ) , .  V, is the 
representation of G in X. 

The case of the CCR falls into two parts. First come the displaced Fock representa- 
tions over a complex pre-Hilbert space T, whose completion is X. These are defined 
by linear functionals, F, on 7. The condition of unitary implementability, provided 
that any G-invariant F vanishes on T, is then given by the necessary and sufficient 
condition 

VgF - F E X for each g E G. 
Second come the symplectically transformed states. Starting from the Fock representa- 
tion of the Weyl operators, { W ( f ) :  f~ X} we may obtain a non-Fock representation 
(those which do not contain a vacuum state) W T ( f )  = W (  T f )  where T is a symplectic 
operator on X. The operator T is regarded as a real-linear operator in the complex 
space X. One can show (see [4]) that T = U exp A where U is a unitary operator in 
3% and A is an anti-linear operator in X. WT is equivalent to W if and only if A E B ( X ) ,  . 
The necessary and sufficient condition that the group G be unitarily implementable in 
WT is given as 

V,AV;'-AEB(X), for each g E G. 
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All these three problems fall into the domain of 1-cocycles of G with values in a 
Hilbert space. For details of the derivation of the conditions, the reader can consult 
[ 1,2,4] for the CCR, and [3] for the CAR. 

Having explained why 1-cohomology arises, we may begin the process of solution. 

2. Cocycles 

A 1-cocycle for the connected Lie group G ,  which has a strongly continuous unitary 
representation V in a Hilbert space 2, is a continuous map +: G+ 2 which satisfies 
the condition 

+ k h )  = Vg+(h)+ +(g)  for g, h E G. 

The cocycle +: G+ 2f is a coboundary if there is a vector .$E X such that 

rlr(g) = v g 5  - 5 
for all g E G .  Two cocycles 4, and +2 are called cohomologous (or equivalent) cocycles 
if 

+ , (g)  - +*k) = vg5- 5 
for some fixed vector 5~ X, i.e. if the difference 

B'(G, 2). The group of 1-cohomology classes is defined by 

H'(G,  2) = Z' (G,  X ) / B ' ( G ,  2). 

- +2 is a coboundary. 
The set of cocycles is written Z' (G,  X) and the set of coboundaries is written 

A cocycle for G which is analytic at the identity has values in Xu, the dense set of 
analytic vectors for the group representation in X. The set of these analytic cocycles 
is denoted by ZL(C,, Xu) and the analytic coboundaries by BL(G, Xu) = B'(G, X) n 
ZL(G, Xu). The corresponding cohomology group is 

H k ( G ,  Xu) = ZL(G, Xu)IBL(G, Xu). 
It is proved in [ 6 ]  that if + E Z'(G,  X), then there is a + 'E  ZL(G, Xu) such that 

+ - +'E B'(G, 2). Moreover, we have [ 6 ]  

H'(G,  X) = H!,,(G, Xu). 
We can define similar structures for the Lie algebra, G, of G. If Vis the representa- 

tion of G, then 7r is the representation of G obtained by using the formula 

for X E G and 5 E Xu. The derivative is the strong derivative in the topology of X. 
A cocycle for G with values in Xu is a linear map 7: G - ,  Xw satisfying 

77([X, YI)  = d X ) 7 ( X )  - 4 Y ) 7 ( X )  

for X, Y E  G. [ X ,  Y ]  is the Lie bracket of X and Y. 7 is a coboundary if there is a 
5~ Xu such that 

for each X E G. 9 ( X )  = d X ) 5  
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The set of cocycles of G is written as Z ' ( G ,  Xu) and the set of coboundaries by 
B'(C, Xu). The cohomology group is defined as before 

H ' (  Cy Xu) = Z'( Cy Xu)/B'( C, Xu). 
Let us define, as in [6], the map A: Z i ( G ,  X u ) + Z ' ( C ,  2,) by 

Again, the derivative is the strong derivative in the topology of X. 
A is an isomorphism between BL(G, Xu) and B'(  C, Xu). Also, A maps H'(G,  Xu) 

injectively into H ' ( G ,  Xu). The mapping is an isomorphism when G is simply con- 
nected. 

It is shown in [7] that if G contains an Abelian normal subgroup, N, then any 
$ E Z'(G, 2) can be written as 

$ ( g ) =  $ F ( g ) + $ l ( g )  
where ljll has values in those vectors of X which are invariant under the action of N, 
and (CIF is of the form 

= MgF - F 
for each g E G. Here, FE  D+( N),  a space which contains X as a dense (non-closed!) 
subspace, and Mg is a representation of G which agrees with V, on X (this is a 
reformulation of theorem 7.3 of [7]). 

We shall call any $ E Z' (G,  2) of the form 

+(g )  = VgF - F 
with F not necessarily in X, a quasi-coboundary (this terminology was first introduced 
by Falkowski [lo]). Notice that we abuse mathematical nicety by calling M, by the 
name Vg. This does not disturb the results which we obtain. 

We denote the set of quasi-coboundaries by Zb(G, X). Clearly, B'(G,  X) c 
Zb(G, 2). The corresponding cohomology group is defined by 

Hb(G,  X) = Z&(G,  X ) / B ' ( G ,  2). 

It is easy to show that HL(G, X) 3 H b ( G ,  Xu). Here, 

Hb(G Xu) = Zb(G, Zu)/B'(G, Xu) 
and Zb(G, Xu) consists of elements from Zb(G, X) n ZL(G, Xu). 

Quasi-coboundaries also arise for the Lie algebra of a Lie group. Indeed, 7: C + Xu 
is a quasi-coboundary for the Lie algebra if there exists F, with F E  X in general, such 
that 

v ( X )  = n(X)F. 

Strictly speaking, we should ask for the condition t h a t f j  F( n ( X ) f )  define a continuous 
linear functional on Xu, but nothing is really lost by writing the original condition, 
and the results obtained are the same. 

We write Zb(C, Xu), B i (  C, and H & (  Cy Xu) for the quasi-coboundaries, 
coboundaries and the cohomology classes of the quasi-coboundaries, respectively. We 
have the relation 

Hb(G, X u ) = Z b ( C ,  xu)lBL(C, Xu). 
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Furthermore, one has the relation Hb(G, Xu) = Hb( G, X,,,). To prove this, we need 
the following supporting result. 

Lemma 1 [2]. Suppose t +  V, is a representation of R in a space A which contains a 
Hilbert space X as a dense subspace, and that V, is unitary when restricted to 2. Then 
the following two conditions are equivalent: 

(1) F E  A satisfies V,F - FE X 
( 2 )  F E  Jll satisfies V,F - F E  X 

V t E R .  
VfE(--E, E )  

for any E > O .  

Theorem 1 .  H L ( G ,  Xu) = Hb( G, X w ) .  

Prooj If CC, E Zb(G, Xu) then A +  E Z&(G, X w )  and the map A respects classes of 
cocycles. Hence to each CC, E ZL(G, Xu) there corresponds a 7 E Zb( G, X,,,). 

Now let 7 E Zb( G, Xu). We have 

7(X) = i.rr(X)F for some F, VX E G. 
Furthermore, i".rr(X)"F E Xw V n  3 1 and there is an E > 0 with 

convergent. Thus [exp(it.rr(X) -  FE Xu V t c  ( - E ,  E ) .  Write V, = exp(i t r (X)) ,  and 
apply lemma 1, so that we obtain 

exp(it.rr(X))F-FE Xw V t E R  VX E G. 
If U(exp(tX)) = exp(it.rr(X)), then U ( e r X ) F -  FE  Xu for all one-parameter groups 
in G. 

If gEG, we can write 

g = e x I . .  .ex" 
for some X,, . . . , X,, E C. Suppose g = ex, eX2, then we have 

U ( g ) F - F =  U(eXieX2)F-F 

= U(eXI)[U(eX2)F-F]+ U(eXI)F-FE Xw.  
The general case follows by induction. Hence, to each 7 E Zb( G, X w )  there corresponds 
a CC, E Zb(G, Xu). This demonstrates an isomorphism between Z&(G, Xu) and 
ZL(C, X,,,) and consequently we obtain 

Hb(G Xu) = HLW, Xu) 
and this proves the theorem. 

Proposition 1. ( a )  Let GI and G2 be two connected Lie groups such that p :  G, + G, 
is a continuous surjective homomorphism. If  V is a strongly continuous unitary 
representation of Gz on a Hilbert space X, then each +bz E Z'(G2,  X) defines an element 
CC,, E Z1(G1, X )  in the representation U = Vo p .  

If p is an isomorphism, then we obtain 

Z'(G1, 2) = Z'(Gz, 2). 
( b )  If V and U are unitarily equivalent strongly continuous unitary representations 

of the connected Lie group G, in Hilbert spaces RI and X z  respectively, then the 
resulting cohomologies are isomorphic. 
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Proof: ( a )  Define $ , ( h )  = & ( g )  where g = p ( h )  with h E GI and gE G2. Then we have 

= v g  

and 

(LAglg2) = Vg,+md+ $ z ( & )  

implies the relation 

$l (hlh2)  = ~ k i $ l ( h 2 ) + $ l ( h l ) .  

This proves the first part. If p is an isomorphism, V = U 0 p-l  and the same argument 
works to prove the isomorphism of the cocycle spaces. 

( 6 )  If S is the unitary operator such that 

vg = su,s-' 

CL&) = S $ k )  

and if $ is a cocycle for U, the cocycle defined by 

is a cocycle for V. This establishes the result, and the proposition. 

If the connected Lie group G contains a compact Lie group K, then each cocycle 
4 of G has an equivalent cocycle +' such that $ ' ( k )  = 0 V k e  K. It is possible to 
combine this property with analyticity at the identity of G [ 13. 

Let KHb(G,  Xu) be the cohomology classes of cocycles with values in Xu and 
which vanish on K and let K H L ( C ,  Xu) be the cohomology classes of cocycles 
7: C+ Xu with 7 ( X K )  = O  for the Lie algebra elements X K  of K,  then we have the 
following proposition. 

Proposition 2. HL(G,  Xu) = K H b ( G ,  Xu) = K H b (  C, Xu). The proof is a combination 
of the remarks made and theorem 1. 

A useful result is the following. 

Lemma 2. Suppose that G = [G, GI, i.e. G is equal to its commutator subgroup. Then 
any cocycle of G, for the trivial representation, is identically zero. 

Proof: We have $ ( g h )  = +(g)+ $ ( h ) ,  from the cocycle condition. Hence +(g) = 

Since G = [G, GI we can assume, for each g E G, 3 k ,  h E G such that g = khk- lh- ' .  
- * ( g - l ) *  

Then 

$k)= $ ( k ) + $ ( h ) + $ ( k - ' ) + $ ( h - ' ) = O .  
This proves the lemma. 

There are many examples of such G. One is SU(1, l), which is the group we 
consider here. 

3. Cocycles for SU(1,l) 

We consider now quasi-coboundaries for unitary irreducible representations of 
SU(1 , l ) .  
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All the unitary irreducible representations of SU(1, l )  are listed in the very rich 
paper of Bargmann [8]. The group has three parameters, and the generators are f o  
for the compact subgroup, and f ,  and f 2  for the other two one-parameter subgroups. 
If F is such that for any irreducible representation V of SU(1, l )  with 

V,F-FEX 

for g E  SU(1, l),  and where X is the representation space, and if V,F- F E  
Zb(SU(1, l) ,  Xu) and vanishes on the compact subgroup of SU(1, l),  then F satisfies 

$oF=O and BlFE x w ,  92F E 2". 

IlFI12 4{llflFl12+ 11f2Fl12>. 

For such an F, we obtain, by direct calculation, that 

The calculations are not difficult, but somewhat lengthy, and so we do not present 
them here. 

This implies that KHb(su(l ,  l ) ,  2") ={O}, where su(1, l )  is the Lie algebra of the 
group SU(1, l ) .  This, in turn, gives us the result 

H;(SU(l , l ) ,X) ={O}. 
Now suppose that V is any representation of SU(1, l),  which may or may not 

contain the identity representation. If CC, is a cocycle for V ,  then we have 

$(SI = 1; 448, d a ( w )  

where R is the Bore1 space for the direct integral decomposition of the representation 
V 

V =  l: V" d a ( w ) .  

Each CC,( e ,  w )  is (for almost all w E R) a cocycle for V". The proof of this can be found 
in [9]. 

If 4 is a quasi-coboundary for V,  then we may assume that each CC,( a ,  U )  is also a 
quasi-coboundary, for each w E R (we may neglect sets of measure zero, and we take 
advantage of this liberty). Furthermore, we assume I) to be analytic at the identity 
and to vanish on the compact subgroup of SU(1, l ) ,  from which we obtain the same 
properties for each CC,( a ,  w )  in the direct integral decomposition. From lemma 2, we 
deduce that no mention need be made of the trivial representation, as Sy( 1 , l )  is equal 
to its commutator group, whence all the corresponding cocycles are identically zero. 

Let us represent the elements of the Lie algebra su( 1 , l )  by X ,  in the infinitesimal 
representation of V, and let us represent the same element by X" in the infinitesimal 
representation of V". Assuming 

CC,E z;(su(L I ) ,  X") 
and + ( k )  = 0 for elements k of the compact subgroup, then we obtain 

0 

X F =  X"F" d a ( w )  

where we have 

(VzFw-F")da(o) 
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Since we assume XFE 2, then we have 

We have assumed $j0F = 0, so B;;F" = 0, and hence we obtain, using our earlier 
result for irreducible representations, 

and this means that 

lR ) l F " 1 1 2 d ~ ( ~ ) ~ 4  * J IIB;PF"II~ ~ w ) .  
/ = I  $2 

Therefore we obtain FE  X All this can be written as a theorem. 

Theorem 2. For any unitary representation of SU( 1,  l ) ,  the quasi-coboundaries 
are all true coboundaries, and so Hb(SU(1, l ) ,  X) is trivial. 
Moreover, llFl12s 4{ IIB;1F112+ 11$j2Fl12} if $joF = 0 and $(g)  = V,F- F is analytic at the 
identity. 

4. Cocycles for PJ (2 + 1) 

Suppose, now, that V is an irreducible representation of P i  ( 2 +  l ) ,  the Poincari group 
of 2 +  1 spacetime dimensions. R3 is an invariant subgroup of P! (2+ 1) .  Indeed, 

~ , t ( 2 + 1 ) = ~ ~ @ ~ 0 ( 2 , 1 )  

where @ denotes the semi-direct product. Moreover, there is a continuous surjective 
homomorphism p: SU( 1 , l )  + SO(2, I ) ,  so that we obtain a continuous surjective 
homomorphism p: R3 @ SU( 1 , l )  + R3 @ SO(2, 1 ) .  Hence any cocycle of P c  (2+ 1)  
can be realised as a cocycle of R3 @ SU( 1 , l ) .  This is a consequence of proposition 1. 

Any cocycle of P$ (2+ 1)  can be written as 

$ ( q )  = $ F ( g ) +  $l(g) 

where $, (g )  has values in the R'-invariant vectors of the Hilbert space, and $ F ( g )  is 
a quasi-coboundary. This is because R3 is invariant and Abelian in P j  (2+ 1 ) .  If the 
irreducible representation V corresponds to momentum p # 0 (i.e. p2 > 0, p2 < 0 or 
p2 = 0, p # 0) then $,(g) = 0 for all g E Pc  (2+ 1 ) .  Hence, for these representations, 
the cocycles are all quasi-coboundaries. Therefore let us consider quasi-coboundaries 
for Pf ( 2 +  1 ) .  These give us quasi-coboundaries for R3 @ SU(1, l ) .  In particular, these 
are quasi-coboundaries for SU(1, l ) ,  and theorem 2 implies that they must be true 
coboundaries. (This follows from the domination of the cocycle function F given by 

where we have assumed $joF = 0.) It follows, then, that all quasi-coboundaries for 
unitary irreducible representations are true coboundaries. If the unitary irreducible 
representation does not belong to p = 0, then every cocycle, being a quasi-coboundary, 
is a true coboundary. We have proved the following theorem. 



646 P Basarab-Horwath 

Theorem 3. Let V be any irreducible representation of P j  (2+ 1). Then 

H k ( P J  ( 2 +  l ) ,  X) = (0). 

H ' ( P J  ( 2 +  l ) ,  X) = { O } .  

If V does not correspond to vanishing momentum, then 

If a unitary representation, V, of P :  ( 2  + 1) does not contain the identity representa- 
tion, then every quasi-coboundary is a true coboundary. Moreover, if also V does not 
contain the representation of vanishing momentum, then all cocycles are true coboun- 
daries. This follows from using proposition 2 and the calculations leading to the 
domination of F by the generators 9, and 92 of SU(1, l ) .  

5. HilbertSchmidt cohomology for PI (2+ 1) 

Let V be a unitary irreducible representation of P J  ( 2 +  1) which does not correspond 
to vanishing momentum. Then V acts in the Hilbert space 

X = L2(R2; C ;  d p )  

where d p  is the invariant measure on the appropriate hyperboloid. 
Suppose that $: P,f (2+1)+ B(X), satisfies 

$(gh) = V,+(h) vi '+ $(g) 

and that $ is continuous. Then I) is a B(X),-valued cocycle. Here I) may either be 
a linear or anti-linear operator. It is proved in chapter 4 of [lo] that the cocycles + 
are in one-to-one correspondence with 

(1) cocycles for VO V with values in L2(R2; X; d p )  if $ is anti-linear or 
(2) cocycles for VO v with values in L2(R2; X; d p )  if $ is linear, where v =  CVC, 

and C is a conjugation, i.e. C2 = 1 and C is anti-linear in X. 
If V does not correspond to vanishing momentum, then VO V and VO v can be 

reduced and expressed as direct integrals of representations of P J  (2+ 1) which do 
not correspond to vanishing momentum. This can be done as in [ 113. Moreover, the 
trivial representation of P,f ( 2  + 1) does not occur in the decompositions. 

From this and the remarks at the end of § 4 ,  it follows that all the cocycles for 
VO V or VO v must be coboundaries. 

Theorem 4. Suppose V is an irreducible unitary representation of P J  ( 2 +  1) which 
does not correspond to vanishing momentum. Then all cocycles $ with 

+: P j ( 2 + l ) + B ( X ) 2  

for the action V,( 9 )  Vi', g E P , f  ( 2 +  l ) ,  whether CC, is linear or anti-linear, are true 
coboundaries, i.e. there exists H E  B(X), with 

$( g)  = V,HV,' - H 

and H is linear or anti-linear, according to the linearity or anti-linearity of $, 

Theorem 5. A representation of the CCR, which is of displaced Fock type, or a 
symplectically transformed Fock representation, and which has P I  (2 + 1) unitarily 
implemented in Fock space, is itself unitarily equivalent to the Fock representation. 
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A quasi-free, gauge invariant representation of the CAR which has P! (2-t 1) unitarily 
implemented in Fock space, is itself unitarily equivalent to the Fock representation or 
to the anti-Fock representation. 

Proof: Combine 0 1 with theorems 3 and 4. 
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